乌兰察布干式变压器无需使用光耦合器_乌兰察布资讯中心_乌兰察布中能变压器厂家
欢迎光临乌兰察布电力变压器厂网站,本厂生产销售乌兰察布s11油浸式变压器,乌兰察布scb10干式变压器,乌兰察布非晶合金变压器等,煤安证、防爆证、生产许可证等资质证件齐全 收藏本站| 网站地图
销售热线
13181089999
主页 > 资讯中心 > 乌兰察布干式变压器无需使用光耦合器

乌兰察布干式变压器无需使用光耦合器

文章出处:http://wulanchabu.lcfywz.com   责任编辑:乌兰察布变压器厂   发布时间:2019-12-31    点击数:264
乌兰察布干式变压器无需使用光耦合器

  DDS(Direct Digital Synthesizer)是基于奈奎斯特抽样定理理论和现代器件生产技术发展的一种新的频率合成技术。与第二代基于相环频率合成技术相比,DDS具有频率切换时间短、频率分辨率高、相位可连续变化和输出波形灵活等优点,因此,广泛应用于教学科研、通信、雷达、自动控制和电子测量等领域。该技术的常用方法是利用性能优良的DDS专用器件,“搭积木”式设计,这种“搭积木”式设计电路方法虽然直观,但DDS专用器件价格较贵,输出波形单一,使用受到一定限制,特别不适合于输出波形多样化的应用场合。随着高速可编程逻辑器件的发展,电子工程师可根据实际需求,在单一FPGA上开发出性能优良的具有任意波形的DDS系统,极大限度地简化设计过程并提高效率。本文在讨论DDS的基础上,介绍利用FPGA设计的基于DDS的乌兰察布干式变压器。

  DDS是一种从相位概念出发直接合成所需波形的数字频率合成技术,主要通过查波形表实现。由奈奎斯特抽样定理理论可知,当抽样频率大于被抽样的频率2倍时,通过抽样得到的数字可通过一个低通滤波器还原成原来的。DDS乌兰察布干式变压器,主要由相位累加器、相位寄存器、波形存储器、D/A转换器和模拟低通滤波器组成如图1所示。fR为参考时钟,K为输入频率控制字,其值与输出频率相对应,因此,控制输入控制字K,就能有效控制输出频率值。通常情况下,K值由控制器写入。

  由图1可知,在参考时钟fR的控制下,频率控制字K与相位寄存器的输出反馈在相位累加器中完成加运算,并把计算结果寄存于相位寄存器,作为下一次加运算的一个输入值。相位累加器输出高位数据作为波形存储器的相位抽样地址值,查找波形存储器中相对应单元的电压幅值,得到波形二进制编码,实现相位到电压幅值的转变。波形二进制编码再通过D/A转换器,把数字转换成相应的模拟。低通滤波器可进一步滤除模拟中的高频成分,平滑模拟。在整个过程中,当相位累加器产生一次溢出时,DDS系统就完成一个周期输出任务。频率控制字K与输出波形频率的表达关系式为:

  为了得到较小分辨率,在实际工程设计中,N一般取得较大值,该系统是N取32位设计的。

  本设计所用到的关键器件主要是可编程逻辑器件(FPGA)和D/A转换器。考虑设计成本等因素,FPGA采用altera的低成本Cyclone系列Eplc6Q240C8。该器件采用逻辑阵列模块(LAB)和查找表(LUT)结构,内核采用1.5 V电压供电,是低功耗元件。此外,Cyclone系列EPlC60240C8内部资源丰富,其内部内嵌5 980个逻辑单元(LE),20个4 KB双口存储单元(M 4 KBRamblock)和92 160 bit普通高速RAM等资源,因此,能较好满足该系统设计要求。而D/A转换器则采用National Semiconductor的dac0832。

  相位累加器与相位寄存器主要完成累加,实现输出波形频率可调功能。利用QUARTUSII可编程逻辑器件系统开发工具进行设计。首先,打开Quartus II软件,新建一个工程管理文件,然后在此工程管理文件中新建一个VERILOGHDL源程序文件,并用硬件描述语言Verilog HDL编写程序实现其功能。在设计过程中,可在一个模块中描述。一个参考的Verilog HDL程序如下:

  为了提高系统的分辨率和降低FPGA资源的利用率,采用基于1/4波形的存储器设计技术。利用正弦波对称性特点,只要存储[O~π/2]幅值,通过地址和幅值数据变换,即可得到整个周期内的正弦波,其设计原理如图2所示。

  用相位累加器输出高2位,作为波形区间标志位。当位与次高位都为“0”时,表示输出正弦波正处在[0~π/2]区间内,这时,地址与输出数据都不需要变换;当位为“0”,次高位为“l”时,输出正弦波正处在[π/2“π]区间内,乌兰察布干式变压器这时,地址变换器对地址进行求补操作,而输出数据不变;当位为“l”,次高位为“0”时,输出正弦波正处在[π~3π/2]区间内,这时,地址不变,而输出变换器对输出数据进行求补操作;当位与次高位都为“l”时,输出正弦波正处在[3π/2”2π]区间内,这时,地址和输出数据都进行求补操作。

  数据转换器输出的数据是数字形式的电压值,为实现数字电压值与模拟电压值之间的转换,系统还专门设计D/A转换电路,其D/A转换电路原理图如图3所示。

  为降低设计成本,采用8位廉价DAC0832作为转换器。该器件是倒T型电阻网络型D/A转换器,因其内部无运算放大器,输出为电流,所以要外接运算放大器,本文采用LM324型运算放大器。DAC0832可根据实际情况接成双缓冲、单缓冲和直冲3种形式,这里采用第3种连接形式,即引脚1、引脚2、引脚17、引脚18接低电平,引脚19接+5 V。引脚8为参考电压输入端口.接至+1O V的乌兰察布干式变压器,当数字输入端全为高电平时,模拟输出端为+10 V。

  为验证本系统的设计正确性,利用Ouarlus II软件的嵌入式逻辑分析仪分析的波形。在工程管理文件中,首先新建一个SignalTap文件,并在SignalTap文件中添加要验证的引脚和设置相关的参数,然后保存、编译和下载到EPlC6Q240C8中,再启动嵌入式逻辑分析仪就可实时观察到相应的引脚波形,图4为在硬件环境中应用嵌入式逻辑分析仪观察到的波形。其中,图4a为由DDS硬件合成的正弦波形;图4b为由DDS硬件合成的矩形波形;图4c为由DDS硬件合成的三角波形。观察结果表明,该系统输出的各种波形稳定,与设计要求一致,从而有效验证了该设计的正确性。

  直接数字频率合成(DDS)技术属第三代频率合成技术,与第二代基于锁相环频率合成技术相比,利用DDS技术合成的输出波形具有良好的性能指标。本文在DDS技术工作原理的基础上,介绍基于FPGA实现DDS的设计方法,并给出该系统合成的波形,从测试结果可看出,该系统工作稳定、可靠,并具有较好的参考与实用价值。

  正点原子推出的“开拓者“、”新起点”两款FPGA开发板功能强大,配有教科书级的文档教程;配套的视频分为工具篇

  正点原子推出的“开拓者“、”新起点”两款FPGA开发板功能强大,配有教科书级的文档教程;配套的视频分为工具篇

  首先,扰码:扰码的目的是抑制线” ,便于从线路中提取时钟。由于线路仅

  【Elecfans社区精华帖】(190507):快上车!32年老司机教你优化模拟集成!

  如果一个扰码器现在做并行化,例如要求输入位宽为32位,那么本原多项式如何确定?在实现的过程中,如果想使用并行,是不是需要将...

  本文档的主要内容详细介绍的是给ARM入门者的一些学习经验资料合集免费下载。

  许多通信系统通过48 V背板供电。此电压通常会降至较低的中间母线 V甚至更....

  请问fft中采用同位运算为什么还要用两块ram,同位运算不是只有一个ram就好了吗?

  fft中采用同位运算为什么还要用两块ram,同位运算不是只有一个ram就好了吗? ...

  有CYUSB3KIT-001 EZ-USB FX3开发套件的原理图吗?

  亲爱的柏树, 我需要把你的开发工具包和FPGA板连接起来。所以我的问题是,有可能为UB3.0开发套件获取原理图吗?BOM也很...

  如果我正确读取Spartan3数据表,每个Spartan3中都有一个内部硅振荡器,可以配置为CCLK时钟,用于在主串行模式下配置FPG...

  嗨, 我正在寻找有关如何在Spartan 3入门套件上编程Spartan 3的信息。 我查看了主板附带的用户手册,并相信我遗漏了一些东西...

  嗨,大家好 *我在主串行模式下使用spartan-3e fpga和XCFxxS Prom。 *对于fpga开始初始化,必须进行2次进行: 1)通电良...

  现代FPGA是有史以来复杂的集成电路之一,它们采用进 的晶体管技术和的架构,以实现令人难以....

  引言 在日常的测试测量中,经常使用数据采集卡采集数据。但是很多数据采集卡往往通过PCI总线完成数据的传输,它有诸多弊...

  手头有个案子是做赛灵思的FPGA的,有内置存储吗?还是要外挂一个SRAM?求大神指点 ...

  本文档的主要内容详细介绍的是ADC与DAC转换器的基础知识详细资料说明包括了:1.A/D、D/A原理....

  增量累加模数转换器 (ADC) 具高准确度和抗噪声性能,非常适用于直接测量多种类型的传感器。乌兰察布干式变压器需要高准确度测量的传感器 (如 RT...

  在用verilog编写代码的时候出现错误提示:“mixed single- and double-e....

  “嵌入式系统”这个词范围很广,从数字式电子表到变电站电力检测系统中的PC都可归于这一范畴。大多数情况....

  在万物互联大背景下,预计未来将有数以百亿的智能设备连接至互联网。思科数据显示,到 2021 ....

  All Programmable 技术和器件的全球企业赛灵思(Xilinx, Inc.,(N....

  AI芯片领域玩家众多,作品也在不断更新迭代。然而,到目前为止,完全符合描述和基准测试的AI芯片寥寥无....

  上面的波形是输出端LC滤波器的电容为22µF时,在约200MHz的频率范围存在180mVp-p左右的....

  FPGA对于硬件工程师以及高校师生来说是非常重要的一项技能,其重要性甚至要超过PCB设计,不仅是因为....

  早前苹果与高通诉讼案大和解,苹果将采用高通基带芯片后,英特尔(Intel)同时也宣布退出5G基带芯片....

  :针对模拟电路实验教学过程中存在的实验项目单一、电路原理难理解、学生学习积极性不高的问题,结合实际教....

  Q:FPGA设计与DSP设计相比,的不同之处在哪里?A:这个问题要从多个角度看。它们都用于某个功....

  阿里云、腾讯云在几天前扎堆推出了FPGA云服务。而百度呢,2015年获得百度奖的“仙童”项目正是....

  在并购浪潮的裹挟下,半导体从业者也更加小心翼翼,如履薄冰。就算在“曲高和寡”的小众FPGA市场,也已....

  Alibaba Cloud(阿里云)已宣布与英特尔合作开展基于云的现场可编程门阵列 (FPGA) 加....

  初始化完成后,就可以调用Modbus从机通讯命令(MBUS_SLAVE)了。通常Modbus从机通讯....

  简单介绍一下RS485,RS485和其它总线组网过程中另一个需要主意的问题是终端负载电阻问题,在设备少距离短的情况下不加终端负载电阻....

  在使用 FPGA 构建的基于微控制器的典型系统中,开发人员需要管理用于加载 FPGA 编程比特流的序....

  本文档的主要内容详细介绍的是AD9851高集成度DDS频率合成器的电路原理图数据手册免费下载。

  为了开发一种新的方法,AlQuraishi应用了所谓的端到端可微深度学习。这一人工智能分支极大地降低....

  之前 OpenAI 提出的 GPT-2,使用近 40 GB 的网页文字训练而成,主要具备了生成文本、....

  本资料是基于 单片机 控制的DC-DC变换器设计详解,包括在设计的控制方法及实现方案,在硬件设计部分....

  我们考虑如何通过具有高性能CPU子系统和包括FPGA可重编程加速硬件处理单元的SoC架构来成功应对5....

  本文档的主要内容详细介绍的是使用FPGA开发板进行奇偶流水灯的详细资料说明。

  本文档的主要内容详细介绍的是FPGA基础及7系列FPGA基本原理的基础资料说明

  本文档的主要内容详细介绍的是使用FPGA实现三输入的多数判决器的实验详细资料说明。

  ARM:架构採用32位精简指令集(RISC)处理器架构,从ARM9开始ARM都採用了哈佛体系结构,这....

  DMT40M9LPS 40V N通道增强模式MOSFET的数据手册免费下载

  这种MOSFET的设计是为了小化通态电阻(rds(on)),同时保持优越的开关性能,使其成为高效电....

  这一新一代MOSFET的设计是为了小化RDS(开),同时保持优越的开关性能。该装置是乌兰察布干式变压器管理和负....

  现场可编程闸阵列(FPGA)成车用电子系统差异化新利器。FPGA具备高度设计弹性与扩展性,可让汽车电....

  赛灵思表示全球首款自行调适运算平台产品Versal可以为其硬件与软件进行编程与化的工作

  随着越来越广泛的联网需求,加上越来越多的联网设备情况下,资料中心的高效能运算已成为现代商业营运模式中....

  多普勒测量系统利用多普勒效应测量运动目标(固体、液体或气体)的速度。著名的应用大概要算雷达枪了,交....

  从8048 开始,“单片机”即成为广受欢迎的代名词,而8051 更成为机电、电子相关专业必学的内容,....

  仅仅两周后,随着三星推出其基于赛灵思技术的 SmartSSD,这一势头继续发展。SmartSSD 直....

  本文档的主要内容详细介绍的是FPGA驱动的储存模块的使用教程免费下载。

  身处数据洪流的时代,这不仅意味着数据量的爆炸式增长,更体现在数据形态和格式正发生着革命性的变化,数据....

  随着互联网红利逐渐消失,物联网在整体科技发展潮流中顺势而行,成为被普遍看好的新一代产业发展方向。

  在高耐压范围中,SiC MOSFET与Si-MOSFET相比,具有“开关损耗与导通损耗小”、乌兰察布干式变压器“可支持....

  2004年,Altera 正式推出了Nios II系列32位RISC嵌入式处理器。Nios II系列....

  Quartus II design 是级和复杂的,用于system-on-a-programma....

  乌兰察布干式变压器在实验室和电子领域的使用频率很高,在教学科研、生产、過感巡测等众多场合都有着广泛的应用。随....

  AI(人工智能)俨然是近年全球科技产业重要的热门词汇,作为生产AI创新核心芯片的供货商们,自然也不....

  “深化大数据、人工智能等研发应用,培育新一代信息技术、高端装备、生物医药、新能源汽车、新材料等新兴产....

  液位传感器是利用红外光学原理 , 将检测的液位 、 液面通过光学传递 , 转换为电输出 , ....

  本文档的主要人详细介绍的是FPGA基础知识培训教程免费下载包括了:1.什么是FPGA ,2.Acte....

  UCC28064A 具有高轻负载效率的 Natural Interleaving™ 转换模式 PFC 控制器

  UCC28064A交错式PFC控制器具有比以前更高的额定功率。该设备使用Natural Interleaving™技术。两个通道都与主机(没有从通道)同步到同一频率。这种方法可以实现更快的响应时间,出色的相间导通时间匹配以及各个通道的过渡模式操作。该器件具有突发模式功能,可实现高轻载效率。突发模式消除了在轻负载操作期间关闭PFC以满足待机功率目标的需要。当与UCC25630x LLC控制器和UCC24624同步整流器控制器配对时,突发模式消除了对辅助反激转换器的需要。 扩展的系统级保护功能包括输入欠压和压差恢复,输出过压,开环,过载,软启动,相位故障检测和热关断。额外的故障安全超过电压保护(OVP)功能可防止中间电压短路,如果未检测到,可能会导致灾难性设备故障。先进的非线性增益可以快速,平稳地响应线路和负载瞬态事件。专线 - 丢失处理可避免重大的电流中断。在突发模式操作期间不切换时,偏置电流的大幅减少可提高待机性能。 特性 输入滤波器和输出电容纹波电流降低 降低电流纹波,实现更高的系统可靠性和更小的大容量电容器 降低EMI滤波器 高轻载效率 用户可调节相位管理和输入电压补偿 突发模式操作具有可调节的突发阈值 帮助实现...

  UCC28951器件是UCC28950的增强版本。它是UCC28950的完全兼容的直接替代品。请参阅应用说明SLUA853以确定要使用的控制器。除了主动控制同步整流器(SR)输出级之外,UCC28951还使用全桥的高级控制。 可编程延迟确保ZVS在各种工作条件下工作,而负载电流自然会调整次级侧同步整流器(SR)的开关延迟。此功能可限度地提高整体系统效率。 UCC28951具有许多轻载管理功能,包括突发模式操作和动态SR ON和OFF控制,可在转换到不连续电流模式(DCM)操作期间进行控制。该器件工作在电流模式或电压模式控制。开关频率可编程为1 MHz。该器件具有保护功能,包括逐周期电流限制,UVLO和热关断。 24引脚TSSOP封装符合RoHS要求。 特性 增强型零电压开关(ZVS)范围 直接同步整流器(SR)控制 轻载效率管理包括: 突发模式操作 不连续导通模式(DCM),具有可编程阈值的动态SR开/关控制 可编程自适应延迟 具有可编程斜率补偿和电压模式控制的平均或峰值电流模式控制 闭环软启动和启用功能

  具有双向同步的可编程开关频率高达1 MHz (±3%)支持打嗝模式的逐周期电流限制保护 150-μA启动电流...

  UCC24624高性能同步整流器(SR)控制器专用于LC谐振转换器,用SR MOSFET取代有损二极管输出整流器,提高整体系统效率。 UCC24624 SR控制器采用漏极 - 源极电压检测方法实现SR MOSFET的开关控制。实现比例栅极驱动以延长SR导通时间,小化体二极管导通时间。为了补偿由MOSFET MOSFET寄生电感引起的失调电压,UCC24624实现了可调节的正向关断阈值,以适应不同的SR MOSFET封装。 UCC24624具有内置475 ns导通时间消隐功能,并具有650 ns的关断时间消隐功能,可避免SR错误导通和关断。 UCC24624还集成了双通道互锁功能,可防止两个SR同时打开。具有230V电压检测引脚和28V ABSVDD额定值,可直接用于转换器,输出电压高达24.75 V.内部钳位允许控制器通过添加外部限流电阻轻松支持36V输出电压在VDD上。 通过基于平均开关频率的内置待机模式检测,UCC24624可自动进入待机模式,无需使用外部组件。低待机模式电流为180μA,可满足现代空载功耗要求,如CoC和DoE法规。 UCC24624可与URC25630x LLC和UCC28056 PFC控制器一起使用,以实现高效率,同时保持出色的轻载和空...

  UCC3750源振铃控制器为四象限反激式环形乌兰察布干式变压器电路提供完整的控制和驱动解决方案。 IC控制初级侧开关,当从输入到输出进行电力传输时,该开关被调制。它还控制两个次级开关,在正功率流动期间充当同步整流器开关。当乌兰察布干式变压器输出到乌兰察布干式变压器时,这些开关是脉冲宽度调制的。 UCC3750有一个板载正弦波参考,可编程频率为20Hz,25Hz和50Hz。该参考源自外部连接的高频(32kHz)晶体。两个频率选择引脚控制内部分压器,提供20Hz,25Hz或50Hz的正弦输出。通过将外部产生的正弦波提供给芯片或通过以所需频率的固定倍数为晶体输入提供时钟,环形乌兰察布干式变压器也可用于其他频率。 UCC3750中包含的其他功能可编程电流限制(带缓冲放大器),用于栅极驱动电压的电荷泵电路,内部3V和7.5V基准电压源,三角形时钟振荡器和缓冲放大器,用于在输出电压上增加可编程偏移。 UCC3750还提供了一个非专用放大器(AMP),用于满足其他处理要求。 特性 为基于反激的四象限放大器拓扑提供控制 具有低THD的板载正弦波参考 不同电线Hz) 可编程输出幅度和DC偏移 用于短路保护的限流 Secondary侧电压模式控制 采用5...

  LM25180 具有 65V、1.5A 集成功率 MOSFET 的 42V 输入电压 PSR 反激式转换器

  LM25180是一款初级侧(PSR)反激式转换器,在4.5V至42V的宽输入电压范围内具有高效率。隔离输出电压采样自初级侧反激式电压,因此,无需使用光耦合器,电压基准或变压器的第三绕组进行输出电压。凭借高度的集成性,可实现简单可靠的高密度解决方案,其中只有一个组件穿过隔离层。通过采用边界导电模式(BCM)开关,可实现紧凑的磁解决方案以及优于±1%的负载和线V功率MOSFET能够提供高达7W的输出功率并提高应对线转换器简化了隔离式/乌兰察布干式变压器的实施,且可通过可选功能优化目标终端设备的性能。该器件通过一个电阻器来设置输出电压,同时使用可选的电阻器通过抵消反激式二极管的压降热系数来提高输出电压精度。其他功能包括内部固定或外部可编程启动,可实现更高效率的可选偏置乌兰察布干式变压器连接,用于可调节线路UVLO的精密使能输入(带迟滞功能),间断模式过载保护和带自动恢复功能的热关断保护。 LM25180反激式转换器采用8引脚4mm×4mm热增强型WSON封装(引脚间距为0.8mm)。 特性 专为可靠耐用的应用而设计 4.5V至42V的宽输入电压范围 稳定可靠的解决方案,只有一个组件穿过...

  UCC3750源振铃控制器为四象限反激式环形乌兰察布干式变压器电路提供完整的控制和驱动解决方案。 IC控制初级侧开关,当从输入到输出进行电力传输时,该开关被调制。它还控制两个次级开关,在正功率流动期间充当同步整流器开关。当乌兰察布干式变压器输出到乌兰察布干式变压器时,这些开关是脉冲宽度调制的。 UCC3750有一个板载正弦波参考,可编程频率为20Hz,25Hz和50Hz。该参考源自外部连接的高频(32kHz)晶体。两个频率选择引脚控制内部分压器,提供20Hz,25Hz或50Hz的正弦输出。通过将外部产生的正弦波提供给芯片或通过以所需频率的固定倍数为晶体输入提供时钟,环形乌兰察布干式变压器也可用于其他频率。 UCC3750中包含的其他功能可编程电流限制(带缓冲放大器),用于栅极驱动电压的电荷泵电路,内部3V和7.5V基准电压源,三角形时钟振荡器和缓冲放大器,用于在输出电压上增加可编程偏移。 UCC3750还提供了一个非专用放大器(AMP),用于满足其他处理要求。 特性 为基于反激的四象限放大器拓扑提供控制 具有低THD的板载正弦波参考 不同电线Hz) 可编程输出幅度和DC偏移 用于短路保护的限流 Secondary侧电压模式控制 采用5...

  LM5180 具有 100V、1.5A 集成功率 MOSFET 的 70V 输入电压 PSR 反激转换器

  LM5180是一款初级侧(PSR)反激式转换器,在4.5V至70V的宽输入电压范围内具有高效率。隔离输出电压采样自初级侧反激式电压,因此,无需使用光耦合器,电压基准或变压器的第三绕组进行输出电压。凭借高度的集成性,可实现简单可靠的高密度解决方案,通过采用边界导电模式(BCM)开关,可实现紧凑的磁解决方案以及优于±1%的负载和线V功率MOSFET能够提供高达7W的输出功率并提高应对线转换器简化了隔离式/乌兰察布干式变压器的实施,且可通过可选功能优化目标终端设备的性能。该器件通过一个电阻器来设置输出电压,同时使用可选的电阻器通过抵消反激式二极管的压降热系数来提高输出电压精度。其他功能包括内部固定或外部可编程软启动,可实现更高效率的可选偏置乌兰察布干式变压器连接,用于可调节线路UVLO的精密使能输入(带迟滞功能),间断模式过载保护和带自动恢复功能的热关断保护。 /p

  LM5180反激式转换器采用8引脚4mm×4mm热增强型WSON封装(引脚间距为0.8mm)。 特性 专为可靠耐用的应用而设计 宽输入电压范围:4.5V至70V 稳定可靠的解决方案,只有一个组件穿过隔离层 ±1%的总输出...

  UCC2305集成了控制和驱动一个HID灯所需的所有功能。 UCC2305专为满足汽车前照灯的苛刻,快速开启要求而量身定制,但也适用于选择HID灯的所有其他照明应用。 HID灯是任何照明应用的理想选择,可以从非常高的效率,蓝白色光,小物理灯尺寸和长寿命中受益。 UCC2305包含一个完整的电流模式脉冲宽度调制器,灯功率调节器,灯温补偿和总故障保护。灯泡温度补偿对于汽车前照灯至关重要,因为无需补偿,光输出从冷灯变为完全预热的灯。 UCC2305在-40°的环境温度下经过全面测试C至105°C。 特性 符合汽车应用要求 调节灯泡功率 补偿灯泡温度 固定频率操作 电流模式控制 过流保护 过压关机 开路和短路保护

  高电流FET驱动输出 在宽电池电压范围内工作: 5 V至18 V 参数 与其它产品相比PWM控制器和谐振控制器 Frequency (Max) (kHz) Features Rating Operating temperature range (C) Package Group Package size: mm2:W x L (PKG) UCC2305-Q1 200 Soft Switching Automotive -40 to 105 SOIC 28 28SOIC: 184 mm2: 10.3 x 17.9 (SOIC 28) ...

  LM25180-Q1 具有 65V、1.5A 集成功率 MOSFET 的 42V 输入电压 PSR 反激式转换器

  LM25180-Q1是一款初级侧(PSR)反激式转换器,在4.5V至42V的宽输入电压范围内具有高效率。隔离输出电压采样自初级侧反激式电压,因此,无需使用光耦合器,电压基准或变压器的第三绕组进行输出电压。凭借高度的集成性,可实现简单可靠的高密度解决通过采用边界导电模式(BCM)开关,可实现紧凑的磁解决方案以及优于±1%的负载和线V功率MOSFET能够提供高达7W LM25180-Q1转换器简化了隔离式/乌兰察布干式变压器的实施,且可通过可选功能优化目标终端设备的性能。器件通过一个电阻器来设置输出电压,同时使用可选的电阻器通过抵消反激式二极管的压降热系数来提高输出电压精度。其他功能包括内部固定或外可编程软启动,可实现更高效率的可选偏置乌兰察布干式变压器连接,用于可调节线路UVLO的精密使能输入(带迟滞功能),间断模式过载保护和带自动恢复功能的热关断保护。 LM25180-Q1符合汽车AEC-Q100 1级标准,并且采用引脚间距为0.8mm且具有可湿性侧面的8引脚WSON封装。 特性 符合面向汽车应用的AEC-Q100标准 器件温度等级1:-40℃至125℃的环境温度范围 专为可靠耐用的应用而设计 4.5V至42V的宽输入电压...

  SN74FB2033A是一款8位收发器,在TTL电平A端口上具有分离输入(AI)和输出(AO)总线。通用I /O,集电极开路B \ n端口工作在背板收发器逻辑(BTL)电平。 每个方向的数据流逻辑元素由两个模式输入(B-to-A的IMODE1和IMODE0,A-to-B的OMODE1和OMODE0)配置为缓冲区,D-类型触发器或D型锁存器。在缓冲模式下配置时,反向输入数据出现在输出端口。在触发器模式下,数据存储在相应时钟输入(CLKAB /LEAB或CLKBA /LEBA)的上升沿。在锁存模式下,时钟输入用作高电平有效透明锁存器使能。 无论选择何种逻辑元素,B-to-A方向的数据流都由LOOPBACK输入进一步控制。当LOOPBACK为低电平时,B \ -port数据是B-to-A输入。当LOOPBACK为高电平时,所选A-to-B逻辑元件的输出(反转之前)是B-to-A输入。 AO端口启用/-disable控件由OEA提供。当OEA为低电平或V CC 小于2.5 V时,AO端口处于高阻态。当OEA为高电平时,AO端口处于活动状态(逻辑电平为高或低)。 B \ port由OEB和OEB \控制。如果OEB为低电平,OEB \为高电平,或者V CC 小...

  SN74FB2031是一款9位收发器,设计用于在TTL和背板收发器逻辑(BTL)环境之间转换。该器件专为与IEEE Std 1194.1-1991兼容而设计。 B \端口以BTL电平工作。开集极B \端口指定吸收100 mA。为B \输出提供两个输出使能(OEB和OEB \)。当OEB为低电平时,OEB \为高电平,或者V CC 小于2.1 V,B \ n端口关闭。 A端口以TTL电平工作。当A端口输出使能(OEA)为高电平时,A输出反映B \端口数据的反转。当OEA为低电平或V CC 小于2.1 V时,A输出处于高阻态。 针对四线(JTAG)测试总线分配引脚,尽管目前还没有计划发布JTAG特性版本。 TMS和TCK未连接,TDI与TDO短路。 当V CC 未连接时,BIAS V CC 在BTL输出上建立1.62 V和2.1 V之间的电压。 BG V CC 和BG GND是偏置乌兰察布干式变压器的乌兰察布干式变压器输入。 特性 与IEEE Std 1194.1-1991(BTL)兼容 TTL A端口,背板收发器逻辑(BTL)B \端口 开路集电极B \ - 端口输出接收器100 mA 上电和断电期间的高阻状态 BIAS V CC

  SN74FB1650包含两个9位收发器,用于在TTL和背板收发器逻辑(BTL)环境之间转换。该器件专为与IEEE Std 1194.1-1991兼容而设计。 B \ n端口工作在BTL电平。开集极B \端口指定吸收100 mA。为B \输出提供两个输出使能(OEB和OEB \)。当OEB为低电平时,OEB \为高电平,或者V CC 小于2.1 V,B \ n端口关闭。 A端口工作在TTL电平。当A端口输出使能(OEA)为高电平时,A输出反映B \端口数据的反转。当OEA为低电平或V CC 小于2.1 V时,A输出处于高阻态。 BIAS V CC 建立当未连接V CC 时,BTL输出上的电压介于1.62 V和2.1 V之间。 BG V CC 和BG GND是乌兰察布干式变压器输入用于偏置乌兰察布干式变压器。 特性 与IEEE Std 1194.1-1991(BTL)兼容 TTL A端口,背板收发器逻辑(BTL)B \端口 开路集电极B \ - 端口输出接收器100 mA BIAS V CC 限度地减少实时插入或拔出期间的失真 上电和断电期间的高阻抗状态 B \ - 端口偏置网络预先连接器和PC跟踪到BTL高电平电压 TTL输入结构包含有效在线终止时紧急援助 参数 与其它产品相...

  SN10KHT5574 具有 D 类边沿触发器和三态输出的八路 ECL 至 TTL 转换器

  这个八进制ECL到TTL转换器旨在提供10KH ECL环境和TTL环境之间的有效转换。该器件专门用于提高ECL-to-TTL CPU /总线导向功能的性能和密度,如存储器地址驱动器,时钟驱动器和面向总线的接收器和发送器。 八SN10KHT5574的触发器是边沿触发的D型触发器。在时钟正跳变时,Q输出设置为在D输入端设置的逻辑电平。 缓冲输出使能输入( OE ”可用于将8个输出置于正常逻辑状态(高或低逻辑电平)或高阻态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。高阻抗第三状态和增加的驱动提供了驱动总线的能力,而无需接口或上拉组件。 输出使能输入 OE

  不会影响触发器的内部操作。输出关闭时,可以保留旧数据或输入新数据。 SN10KHT5574的特点是在0°C至75°C的温度范围内工作。 特性 10KH兼容 ECL时钟和TTL控制输入 流通式架构优化PCB布局 中心引脚V CC ,V EE 和GND配置限度地降低高速开关噪声 封装选项包括“小”概述“包装和标准塑料DIP 参数 与其它产品相比GTL/TTL/BTL/ECL 收发器/转换器 Technology Family VCC (Min) (V) ...

  SN74GTLPH1655 16 位 LVTTL 到 GTLP 可调节边缘速率通用总线位UBT ??提供LVTTL到GTLP和GTLP到LVTTL电平转换的收发器。它被划分为两个8位收发器,并允许透明,锁存和时钟模式的数据传输。该器件提供以LVTTL逻辑电平工作的卡与以GTLP电平工作的背板之间的高速接口。高速(比标准LVTTL或TTL快约三倍)背板操作是GTLP降低输出摆幅( 可变边沿速率控制(ERC)输入为分布式负载中的数据传输速率和完整性选择GTLP上升和下降时间 I off ,上电三态和BIAS V CC 支持实时插入 A端口数据输入上的总线保持 分布式V CC

  和GND引脚限度地降低高速开关噪声 闩锁性能超过100 JESD 78,Class II ESD保护超过JESD 22 2000-V人体模型(A114-A) 200-V机器型号(A115-A) 1000-V充电设备模型(C101) OEC,TI,TI-OPC,UBT和Widebus是德州仪器的商标。 参数 与其它产品相比GTL/TTL/BTL/ECL 收发器/转换器 Technology Family VCC (Min) (V) VCC (Max) (V) Bits (#) Voltage (Nom) (V) F @ N...

  SN74GTLP21395 具有独立 LVTTL 端口、Fdbk 路径和可选择极性的双路 1 位 LVTTL/GTLP 可调节边沿速率总线线总线收发器,提供LVTTL到GTLP和GTLP到LVTTL - 应用程序的级别转换,例如主时钟和辅助时钟,需要单独的输出启用和真/补控制。该器件允许透明和反向透明的数据传输模式,具有独立的LVTTL输入和LVTTL输出引脚,为控制和诊断监控提供反馈路径。该器件提供以LVTTL逻辑电平工作的卡与工作在GTLP电平的背板之间的高速接口,专为与德州仪器3.3-V 1394背板物理层控制器配合使用而设计。高速(比标准LVTTL或TTL快约三倍)背板操作是GTLP降低输出摆幅( Y输出设计用于吸收高达12 mA的电流,包括等效的26- 电阻器可减少过冲和下冲。 GTLP是德州仪器(TI)衍生的Gunning收发器逻辑(GTL)JEDEC标准JESD 8-3。 SN74GTLP21395的交流规格仅在优选的较高噪声容限GTLP下给出,但用户可以灵活地在GTL上使用该器件(V TT = 1.2 V且V REF

  = 0.8 V)或GTLP(V TT = 1.5 V且V REF = 1 V)电平。有关在FB + /BTL应用中使用GTLP器件的信息,请参阅TI应用报告,德州仪器GTLP常见问题解答,...

  SN74GTLP1394 具有独立 LVTTL 端口、反馈路径和可选择极性的 2 位 LVTTL 到 GTLP 可调节边沿速率总线线总线收发器,可提供LVTTL至GTLP和GTLP至LVTTL - 级别翻译。它允许透明和反向透明的数据传输模式,具有独立的LVTTL输入和LVTTL输出引脚,为控制和诊断监控提供反馈路径。该器件提供以LVTTL逻辑电平工作的卡与工作在GTLP电平的背板之间的高速接口,专门设计用于与德州仪器1394背板物理层控制器配合使用。高速(比标准LVTTL或TTL快约三倍)背板操作是GTLP降低输出摆幅( = 0.8 V)或GTLP(V TT = 1.5 V且V REF = 1 V)电平。 通常情况下,B端口以GTLP电平工作。 A端口和控制输入工作在LVTTL逻辑电平,但具有5 V容差,并兼容TTL和5 V CMOS输入。 V REF 是B端口差分输入参考电压。 该器件完全指定用于使用I off 的上电插入应用,上电3 -state和BIAS V CC 。 I off 电路禁用输出,防止在断电时损坏通过器件的电流回流。上电和断电期间,上电三态电路将输出置于高阻态,从而防止驱动器冲突。 BIAS V CC 电路对B端口输入/输出连接进行预充电和预处理,防止在插入或拔出卡时干扰背板上的有效数...

  SN74GTL1655 可带电插入 16 位 LVTTL 到 GTL/GTL+ 通用总线 mA),低输出阻抗(12 )16位UBT ??提供LVTTL-to-GTL /GTL +和GTL /GTL + -to-LVTTL电平转换的收发器。该器件被划分为两个8位收发器,并结合了D型触发器和D型锁存器,以实现类似于?? 16501功能的透明,锁存和时钟数据传输模式。该器件提供以LVTTL逻辑电平工作的卡与以GTL /GTL +电平工作的背板之间的接口。高速操作是减少输出摆幅(

  SN74GTL2007 12 位 GTL-/GTL/GTL+ 至 LVTTL 转换器

  SN74GTL2007是一个12位转换器,用于连接3.3V LVTTL芯片组I /O和Xeon。处理器GTL- /GTL /GTL + I /O.该器件专为双处理器应用中的平台运行状况管理而设计。 特性 作为GTL- /GTL /GTL +运行至LVTTL或LVTTL至GTL- /GTL /GTL +转换器 系列终止TTL输出30 闩锁测试完成JEDEC标准JESD 78 根据JESD测试的ESD性能22 2000-V人体模型(A114-B,II类) 200-V机器模型(A115- A) 1000-V充电设备型号(C101) 所有商标均为其各自所有者的财产。 参数 与其它产品相比GTL/TTL/BTL/ECL 收发器/转换器 Technology Family VCC (Min) (V) VCC (Max) (V) Bits (#) Voltage (Nom) (V) F @ Nom Voltage (Max) (Mhz) ICC @ Nom Voltage (Max) (mA) tpd @ Nom Voltage (Max) (ns) IOL (Max) (mA) IOH (Max) (mA) Schmitt Trigger Operating Temperature Range (C) Pin/Package var link = zh_CN_folder_p_quick_link_description_features_parametri...

  SN74GTL3004提供可选的GTL参考电压(GTL V REF )。可以使用S0和S1选择引脚调整GTL V REF 的值。 S0和S1引脚包含毛刺抑制电路,具有出色的抗噪性。悬空时,S0和S1控制输入引脚具有100kμ上拉,将GTL V REF 默认值设置为0.67×V TT 比例(S0 = 1且S1 = 1)。 特性 V DD 范围:3.0 V至3.6 V V TT

  范围:1 V至1.3 V 提供可选择的GTL V REF 0.615×V TT 0.63×V TT 0.65×V TT 0.67×V TT ±1%电阻比容差 环境温度范围:-40°C至85°C ESD保护超过以下水平测试(按JESD-22测试): 2500-V人体模型(A114-B,II类) 250-V机器模型(A115) -A) 1500 V充电设备型号(C101) 参数 与其它产品相比GTL/TTL/BTL/ECL 收发器/转换器 Technology Family VCC (Min) (V) VCC (Max) (V) Voltage (Nom) (V) F @ Nom Voltage (Max) (Mhz) ICC @ Nom Voltage (Max) (mA) Schmitt Trigger Operating Temperature Range (C) Pin/Package ...

  SN74GTL2014是一款4通道转换器,用于连接3.3V LVTTL芯片组I /O与Xeon处理器GTL- /GTL /GTL + I /O。 SN74GTL2014在所有端子上集成了ESD保护单元,并且采用TSSOP封装(5.0mm×4.4mm)。器件在自然通风环境下的额定工作温度范围为-40°C至85 °C。要了解所有可用封装,请见数据表末尾的可订购产品附录。 特性 可用作GTL- /GTL /GTL +至LVTTL转换器或LVTTL至GTL- /GTL /GTL +转换器

  LVTTL输入可承受5.5V电压,允许直接访问TTL或5V CMOS GTL输入/输出工作电压高达3.6V,这使得器件可在高压开漏应用中使用 VREF可降至0.5V,以实现低电压CPU使用率 支持局部断电 锁断保护超过500mA,符合JESD78规范的要求 封装选项:TSSOP14 -40°C至+ 85°C工作温度范围 所有端子上具备静电放电(ESD)保护 2000V人体模型(HBM),JESD22-A114 1000V充电器件模型(CDM),IEC61000-4-2 应用

  服务器 基站 有线通信 所有商标均为其各自所有者的财产。 参数 与其它产品相比GTL/TTL/BTL/ECL 收发器...

最新新闻

变压器厂_电力变压器厂官网 
电话:0635-6066688
传真:0635-8783999
手机:13181089999
Q Q:858033047
邮箱:858033047@qq.com

乌兰察布变压器厂家_乌兰察布中能变压器制造有限公司
销售热线:0635-6066688 传真:0635-8783999 手机:13181089999
Q Q:858033047  邮箱:858033047@qq.com
技术支持:互联纵横

销售咨询热线
131-8108-9999